澳门葡京官网

美媒评2018年全球十大突破性技术:AI和人工胚胎上榜

发布时间:2018-02-22浏览:175


导语:《麻省理工科技评论》本周刊文,列出了2018年的10大科技突破。今年入选的技术包括人工智能技术“生成对抗网络”(GAN)、人工胚胎,以及基于天然气的清洁能源技术等。


  以下为完整榜单:


1. 3D金属打印


  3D打印的发展已有几十年时间。但到目前为止,3D打印仍主要用于制造一次性的原型产品。如果希望使用除塑料以外的其他材料,例如金属去打印,不仅成本高昂,且速度很慢。

  不过目前,3D金属打印的成本正越来越低,并逐渐成为一种制造实际零件的方法。如果得到广泛普及,那么将改变大批量产品生产的方式。



  从短期来看,制造商将不再需要维护大量库存。对于汽车零配件这样的商品,在有需要的时候直接打印即可。

  从长期来看,大批量生产少数几种零配件的大型工厂可能会被规模较小、更能适应客户需求变化的工厂所取代。

  3D金属打印可以制造出重量更轻、强度更高的部件,获得传统方法难以做到的复杂形状,并对金属微结构进行更精确的控制。2017年,来自劳伦斯利沃莫国家实验室的研究人员宣布,已开发出一种3D打印方法,能制造出强度达到传统工艺两倍的不锈钢。

  同样在2017年,来自波士顿的3D打印公司Markforged发布了首款价格不到10万美元的3D金属打印机。

  另一家波士顿创业公司Desktop Metal于2017年推出了金属打印原型设备。该公司计划销售用于实际产品生产的大型机器,其生产速度比传统金属打印方法快100倍。

  金属零配件的打印正变得更容易。Desktop Metal目前提供的软件可以生成适合3D打印的设计。用户只需告知软件希望打印的物体参数,软件即可生成适合打印的计算机模型。

  通用电气长期以来一直在其航空产品中使用3D打印技术。该公司正在测试新的金属打印机,速度足以打印大型配件。该公司计划于2018年销售这款打印机。


2. 人工胚胎


  英国剑桥大学的胚胎学家在一项突破性研究中重新定义了如何创造生命。他们利用单个干细胞培育出了逼真的小鼠胚胎。没有用到卵子或精子,只是利用从另一个胚胎中提取的细胞。

  研究者将这些细胞小心放在三维支架上并观察。这些细胞相互之间交流,并排列成几天大的小鼠胚胎的形状。

  团队负责人麦格德莱娜·泽尔尼卡-格茨(Magdelena Zernicka-Goetz)表示:“我们知道,干细胞的强大潜力很像是魔法。但我们没有意识到,它们可以如此漂亮完美地进行自组织。”



  泽尔尼卡-格茨表示,这个“合成”胚胎可能不会发育成为小鼠。但尽管如此,这仍然表明,我们可以不需要卵细胞就能培育出哺乳动物。

  这还不是泽尔尼卡-格茨的目标。她想要研究,早期胚胎细胞如何发挥出特殊作用。她表示,下一步是利用人类干细胞去培育人造胚胎。密歇根大学和洛克菲勒大学也在从事这方面的研究。

  人工智能合成的人类胚胎将给科学家们带来福音,帮助他们理解人体早期发育的每个过程。而由于这些胚胎来自易于操作的干细胞,因此实验室中可以使用各种工具,例如基因编辑工具,在它们的生长过程中开展研究。

  然而,人工胚胎带来了伦理问题。如果这样的胚胎与真实胚胎难以区分,那么情况会是什么样?在胚胎感到疼痛之前,它们能在实验室里成长多久?生物伦理学家认为,在科学竞赛开始之前,我们需要首先解决这些问题。


3. 感知城市


  许多智慧城市计划正不断延期,目标也在不断缩小,或者只能覆盖富豪人群。多伦多的新项目Quayside希望扭转这种失败的模式。该项目计划从头开始思考城市社区,围绕最新的数字技术重建社区。

  这一项目于2017年10月公布,具体建设将从2019年开始。来自纽约、Alphabet旗下的Sidewalk Labs正在与加拿大政府就这一项目展开合作,项目计划在多伦多的海滨工业区进行。

  项目的目标之一是,利用庞大的传感器网络收集空气质量、噪音水平、人口活动等多种数据,随后指导设计、政策和技术决策。



  这样的计划要求所有车辆都实现自动驾驶,并进入共享出行平台。机器人会从事琐碎的杂务,例如递送邮件。Sidewalk Labs表示,将开放对该公司软件和系统的访问,让其他公司可以在此基础上开发服务,就像第三方为智能手机开发应用一样。

  该公司计划密切监控公共基础设施,这引发了对数据管理和隐私保护的担忧。不过Sidewalk Labs表示,可以通过与社区和当地政府的合作来解除这些担忧。

  Sidewalk Labs城市系统规划负责人利特·阿加瓦拉(Rit Aggarwala)表示:“我们为Quayside所做的不同之处在于,这个项目不仅雄心勃勃,也有一定的人文关怀。”这或许有助于Quayside避免重蹈以往智慧城市计划的覆辙。

  负责Quayside开发的政府机构Waterfront Toronto表示,其他北美城市也在与Sidewalk Labs联系,希望成为下一个合作的城市。该机构CEO威尔·福莱西格(Will Fleissig)表示:“旧金山、丹佛、洛杉矶和波士顿都已经致电,希望获得介绍。”


4. 面向所有人的人工智能


  到目前为止,人工智能主要是亚马逊、百度、谷歌和微软等大公司,以及一些创业公司的玩具。对许多其他公司来说,人工智能的成本太高,全面部署非常困难。

  那么解决方案是什么?基于云计算的机器学习工具正在将人工智能带给更广泛的受众。到目前为止,亚马逊AWS是云端人工智能的领先者。谷歌正凭借开源的人工智能库TensorFlow对亚马逊发起挑战。近期,谷歌还公布了Cloud AutoML。这是一套经过预训练的系统,让人工智能更易于使用。



  微软也拥有集成人工智能的云计算平台Azure。此外微软也与亚马逊合作,提供开源的深度学习库Gluon。Gluon主要用于开发神经网络,让神经网络变得像手机应用一样容易开发。

  目前尚不清楚,哪家公司会成为云端人工智能的领先者。但对赢家来说,这意味着巨大的商机。

  如果人工智能革命渗透至各行各业,那么这些产品将成为必不可少的元素。

  目前,人工智能主要应用在科技行业。在这个行业中,人工智能创造了效率,带来了新的产品和服务。不过,许多其他企业和行业也试图利用人工智能。如果医药、制造和能源等行业也能全面部署这项技术,那么生产力将得到大幅提升,整个行业将因此发生革命。

  然而,大部分企业仍然缺乏足够多的人才,弄清如何利用云端人工智能。因此,亚马逊和谷歌也在提供咨询服务。一旦云计算将技术普及给所有人,那么真正的人工智能革命将会启动。


5. 对抗的神经网络


  人工智能非常擅长识别物体。在100万张照片中,它可以准确指出哪张照片中有行人正在过马路。然而,人工智能并不适合绘制一张图片,显示有行人正在过马路。如果能做到这一点,那么人工智能就能创造出非常逼真的模拟环境,让无人驾驶汽车在这样的模拟环境中训练。

  问题在于,创造新东西需要想象力,而想象力是人工智能所不擅长的。

  2014年,蒙特利尔大学博士生伊安·古德费罗(Ian Goodfellow)在一家酒吧的学术辩论中首先想到了这个解决方案,这被称作“生成对抗网络”(GAN)。GAN让两个神经网络在数字版的“猫鼠游戏”中相互对抗。



  两个网络都使用相同的数据集去训练。其中一个名为“生成器”,任务是利用所看到的图像去创建不同版本,例如3只手的人。而另一个名为“鉴别器”,任务是识别所看到的图像是否是生成器制造的假图像。

  通过这样的过程,生成器将非常善于产生图像,导致鉴别器无法判断哪些是真实图像,哪些是假的。从本质上来看,生成器被训练去识别并制作看起来真实的图像。

  过去10年,GAN成为了人工智能最有前景的领域之一,帮助机器生成能迷惑人眼的结果。

  GAN已被投入使用,用于制作听起来很逼真的语音和图像。例如,英伟达的研究者向GAN提供了大量明星照片,随后创造出数百张并不存在的头像。另一个研究团队则生成了类似梵高作品的假画。更进一步,GAN可以以不同方式来重新想象画面,例如将阳光灿烂的道路变成一条雪路,或是将马变成斑马。

  结果并不总是完美的:GAN或许会给自行车安上两个车把,或是把眉毛放在头像错误的地方。不过,由于生成的图像和声音往往非常真实,因此专家认为,从某种意义上来说,GAN已经开始了解所看到和听到的世界的底层结构。这意味着除了想象力之外,人工智能还能获得更独立的能力,理解所见的世界。